4 research outputs found

    Accommodation requirements for microgravity science and applications research on space station

    Get PDF
    Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station

    Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Get PDF
    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware

    Improved wetland soil organic carbon stocks of the conterminous U.S. through data harmonization

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Uhran, B., Windham-Myers, L., Bliss, N., Nahlik, A. M., Sundquist, E., & Stagg, C. L. Improved wetland soil organic carbon stocks of the conterminous U.S. through data harmonization. Frontiers in Soil Science, 1, (2021): 706701, https://doi.org/10.3389/fsoil.2021.706701.Wetland soil stocks are important global repositories of carbon (C) but are difficult to quantify and model due to varying sampling protocols, and geomorphic/spatio-temporal discontinuity. Merging scales of soil-survey spatial extents with wetland-specific point-based data offers an explicit, empirical and updatable improvement for regional and continental scale soil C stock assessments. Agency-collected and community-contributed soil datasets were compared for representativeness and bias, with the goal of producing a harmonized national map of wetland soil C stocks with error quantification for wetland areas of the conterminous United States (CONUS) identified by the USGS National Landcover Change Dataset. This allowed an empirical predictive model of SOC density to be applied across the entire CONUS using relational %OC distribution alone. A broken-stick quantile-regression model identified %OC with its relatively high analytical confidence as a key predictor of SOC density in soil segments; soils 6% OC (organic wetland soils, 15% of the dataset) had virtually no predictive relationship of %OC to SOC density (RMSE = 0.0348 g C cm−3, ~56% mean RMSE). Disaggregation by vegetation type or region did not alter the breakpoint significantly (6% OC) and did not improve model accuracies for inland and tidal wetlands. Similarly, SOC stocks in tidal wetlands were related to %OC, but without a mappable product for disaggregation to improve accuracy by soil class, region or depth. Our layered harmonized CONUS wetland soil maps revised wetland SOC stock estimates downward by 24% (9.5 vs. 12.5Pg C) with the overestimation being entirely an issue of inland organic wetland soils (35% lower than SSURGO-derived SOC stocks). Further, SSURGO underestimated soil carbon stocks at depth, as modeled wetland SOC stocks for organic-rich soils showed significant preservation downcore in the NWCA dataset (<3% loss between 0 and 30 cm and 30 and 100 cm depths) in contrast to mineral-rich soils (37% downcore stock loss). Future CONUS wetland soil C assessments will benefit from focused attention on improved organic wetland soil measurements, land history, and spatial representativeness.This project was funded through the U.S. Geological Survey's Land Carbon Program and a grant to ES through the U.S. Geological Survey's Community for Data Integration Program for generating cross-agency assessments
    corecore